HIGHLY-RELIABLE FLY-BY-LIGHT/POWER-BY-WIRE TECHNOLOGY

Felix L. Pitts

NASA Langley Research Center

Workshop on Guidance, Navigation, Controls, and Dynamics for Atmospheric Flight

March 18, 1993

OUTLINE

PROGRAM OVERVIEW
Background
Goals/Objectives
Approach / Milestones
Deliverables

FY 92 PROGRAM ACCOMPLISHMENTS Workshop Summary Optical Sensors EME

FY 93 Plans

ELECTROMAGNETIC MODELING VIDEO

PROGRAM OVERVIEW

PROGRAM HISTORY

- Suggested By Industry in Civil Aeronautics Technology Development and Validation Plan
- NASA AAC Reviews: 11/88-LaRC; 1/90-ARC; 11/91-LeRC
- · Non-Advocate Review 8/90 @ NASA HQ
- Draft Working Plan 7/91; Draft Program Plan 9/91
- Requirements Workshop @ LaRC 3/92
- NASA Red/Blue Team: Circa 1992
- APPROXIMATE CURRENT BUDGET (NET \$M) FY 93 FY94 FY95 FY96 FY97 FY98 4 6 7 8 9 10

FBL/PBW

WHAT IS IT?

- REPLACEMENT OF ELECTRONIC DATA TRANSMISSION, MECHANICAL CONTROL LINKAGES, AND ELECTRONIC SENSORS WITH OPTICAL COMPONENTS AND SUBSYSTEMS
- ELIMINATION OF HYDRAULICS, VARIABLE ENGINE BLEED AIR, AND THE CONSTANT SPEED DRIVE FOR POWER GENERATION THROUGH ADVANCES IN AEROSPACE POWER SYSTEM TECHNOLOGY
 - . ELECTRONIC MOTOR CONTROLLERS
 - . POWER SYSTEM DISTRIBUTION AND CONTROL

BENEFITS

- · CIRCUMVENT EMI CONCERNS IN APPLYING DIGITAL CONTROL
 - Intrinsic EMI Immunity and Lifetime Immunity to Signal EMI of Optics
 - Simplify Certification
- ELIMINATE HYDRAULICS, ENGINE BLEED AIR, VSCF DRIVE
- WEIGHT AND VOLUME REDUCTION

ENHANCE DIGITAL CONTROL ACCEPTANCE

POMERATY WITE FBL/PBW WORK BREAKDOWN STRUCTURE TECHNOLOGY

HIGHLY RELIABLE FLY-BY-LIGHT/POWER-BY-WIRE SYSTEMS TECHNOLOGY

GOAL: Develop the Technology Base for Confident Application of Integrated FBL/PBW Systems to Transport Aircraft

OBJECTIVES:

- 1.0 Requirements and Preliminary Design
- 2.0 Develop and Flight Test Optical Sensors and Electro-Optical Converters
- 3.0 Develop and Ground Test a Power Management and Distribution System and Flight Test an Electrical Actuator
- 4.0 Demonstrate Architecture Design and Validation Appropriate for Certification of FBL/PBW Systems
- 5.0 Develop Validated Analytical and Experimental Assessment Methodologies for Electromagnetic Environment Effects
- 6.0 Demonstrate End-to-End FBL/PBW Systems in Ground Tests and Partial Flight Test

FY 92 ACCOMPLISHMENTS

- 1.0 Requirements
 - Conducted Requirements and Technology Workshop at LaRC
 - 160 Participants / NASA CP 10108 Published 9/92
 - Many Open Issues / Few Detailed Requirements Established
 - Recommend System Requirements Study
- 2.0 Develop / Flight Test Optical Sensors and Electro-Optic Converters
 - Functional and Environmental Testing of Optical Sensors and Electro-Optics Complete (Pressure, Temp, Pos, RPM, Light-Off)
- 5.0 Develop Validated Analytical and Experimental Assessment Methodologies for Electromagnetic Environment Effects
 - HIRF Lab Requirements Defined / Documented
 - Gigahertz Transverse Electromagnetic Chamber Procured
 - EM Modeling of HIRF with 737 Aircraft and Video

ELECTROMAGNETIC ENVIRONMENTAL EFFECTS SUMMARY

HIGH INTENSITY RADIATED FIELDS (HIRF)

- The man-made electromagnetic threat to critical electronic systems aboard advanced aircraft
 - Radars
 - Radio Broadcast Transmitters
 - Other Emitters of Electromagnetic Energy

HIRF THREAT to ADVANCED AIRCRAFT

- · Composite Structures
 - Less Shielding than All Metal
- · Flight-Critical Controls
 - Higher Reliability Requirements than Non-Critical Controls
- Digital Control Systems
 - More Sensitive to Transients than Analog
 - Can Cease Correct Operation without Component Damage

Upsets Cannot Be Tolerated in Advanced Aircraft Systems

FLY-BY-LIGHT/ POWER-BY-WIR

HIRF OVERVIEW

- FAA Commissioned SAE-AE-4R Committee 12/88
 - Advisory Circular and Users Manual for Hazards of Electromagnetic Radiation to Aircraft
- Chair: Stan Schneider, Boeing Military Airplane Co. Secretary: Noel Sargent, LeRC
 - -Three Sub-Committees
 - Environment (Chair: Ron Rodgers, ALPA)
 - Advisory Circular (Chair: Chris Kendall, CKC Consultants)
 - Users Manual (Chair: Fred Heather, Patuxent River NAS)
- Status: Final Meeting 1/92
 - SAE Report Spring 1992
- · Problems
 - How to Use and Apply, How to Treat Critical versus Essential Systems
- Need Lab/Bench Tests
- Research Opportunities
 - Modeling and Test Techniques

DIGITAL SYSTEM UPSET

- Functional Error Mode
 - System/Subsystem Level
 - Caused by Electrical Transient
 - Lightning
 - HIRF
 - NEMP
 - SEU / Inter-Galactic Particles
 - No Component Damage
- Corrective Action
 - Reset/Reload Software
 - Internal Recovery Mechanism
- No Standard Guidelines/Criteria
 - Upset Detection
 - Designing Reliable Upset Recovery Mechanisms
 - Performing Tests/Analyses for Upset Susceptibility/Reliability

POWERSY WEEK CURRENT EME ACTIVITIES

- Lawrence Livermore Transport Aircraft Internal EME
- · LaRC Lab HIRF Assessment
 - AIRLAB HIRF Test Facility
 - Bendix Quad Flight Control System (Loan)

AIRLAB HIRF EM TEST LAB

- . GIGAHERTZ TRANSVERSE ELECTROMAGNETIC CELL (GTEM)
 - High Fleid Levels (1 kV/m CW) Testing DC to 1 GHz
 - Moderate Field Levels (<400 V/m CW) Testing DC to 10 GHz
 - High Field Levels Pulse Testing (40 kV/m) from DC to 10 GHz
 - Instrument Calibration Capability DC and 10 GHz
- REVERBERATION CHAMBERS
 - Low Power (0.9kW vs 65kW @ 1kV/m, 1GHz for GTEM)
 - No Test Article Re-orientation
 - RC1 Coverage >87MHz, RC2 Coverage >141MHz
 - Random Field Polarization and Large Number of Modes Necessitate Separate Sensor Calibration Facility such as GTEM

FY 93 PLANS

FY 93 PLANS

- · 1.0 Requirements
- Integrated Requirements Analysis and Preliminary Design Studies
- 2.0 Develop and Flight Test Optical Sensors and Electro-Optical Converters
- Flight Test FOCSI Optical Sensors on F-18 SRA
- Competitive Procurement of Task Assignment Contract
- 3.0 Develop and Ground Test a Power Management and Distribution System and Flight Test an Electrical Actuator
- Competitive Procurement of Task Assignment Contract
- 4.0 Demonstrate Architecture Design and Validation Appropriate for Certification of FBL/PBW Systems (Prelim Design under 1.0)
- 5.0 Develop Validated Analytical and Experimental Assessment Methodologies for Electromagnetic Environment Effects
- Validate Code with ATOPS 737 Aircraft, HIRF 400Hz Protection Study
 Build HIRF Lab

Integrated Requirements Analysis and Preliminary Design Studies

- · REQUIREMENTS GENERATION
 - Aircraft Specification
 - Most Aircraft Systems-Priority to Flight Critical Systems
 - Sensors, Actuators, Computation, Power, Pneumatics
- TECHNOLOGY ASSESSMENTS
 - Photonics, Sensor Encoding, Various Electrical Actuators, Power, Pneumatics,

Data Comm, Systems Technologies/Integration

- · ARCHITECTURE TRADES
 - Centralized/Distributed, Dumb/Smart Actuators, Integrated/Stand Alone Power Mgt, Integration/Separation of Critical and Non-Critical Tasks
- SYSTEM DESIGN and ANALYSIS
 - Preliminary Design of Candidate Architecture
 - Recommend Flight Configuration for 1996 and 1998 Demo

_				
•				
•				
		•		
				•
			•	
	r			
			_	
	:		-	